33 research outputs found

    Approximately coloring graphs without long induced paths

    Get PDF
    It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on tt vertices, for fixed tt. We propose an algorithm that, given a 3-colorable graph without an induced path on tt vertices, computes a coloring with max{5,2t122}\max\{5,2\lceil{\frac{t-1}{2}}\rceil-2\} many colors. If the input graph is triangle-free, we only need max{4,t12+1}\max\{4,\lceil{\frac{t-1}{2}}\rceil+1\} many colors. The running time of our algorithm is O((3t2+t2)m+n)O((3^{t-2}+t^2)m+n) if the input graph has nn vertices and mm edges

    Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles

    Full text link
    A {\em total coloring} of a graph GG is an assignment of colors to the vertices and the edges of GG such that every pair of adjacent/incident elements receive distinct colors. The {\em total chromatic number} of a graph GG, denoted by \chiup''(G), is the minimum number of colors in a total coloring of GG. The well-known Total Coloring Conjecture (TCC) says that every graph with maximum degree Δ\Delta admits a total coloring with at most Δ+2\Delta + 2 colors. A graph is {\em 11-toroidal} if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 11-toroidal graphs, and prove that the TCC holds for the 11-toroidal graphs with maximum degree at least~1111 and some restrictions on the triangles. Consequently, if GG is a 11-toroidal graph with maximum degree Δ\Delta at least~1111 and without adjacent triangles, then GG admits a total coloring with at most Δ+2\Delta + 2 colors.Comment: 10 page

    On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions

    Full text link
    Symbolic ultrametrics define edge-colored complete graphs K_n and yield a simple tree representation of K_n. We discuss, under which conditions this idea can be generalized to find a symbolic ultrametric that, in addition, distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus, yielding a simple tree representation of G. We prove that such a symbolic ultrametric can only be defined for G if and only if G is a so-called cograph. A cograph is uniquely determined by a so-called cotree. As not all graphs are cographs, we ask, furthermore, what is the minimum number of cotrees needed to represent the topology of G. The latter problem is equivalent to find an optimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph (V,E_i) of G is a cograph. An upper bound for the integer k is derived and it is shown that determining whether a graph has a cograph 2-decomposition, resp., 2-partition is NP-complete

    Parameterized Complexity of Maximum Edge Colorable Subgraph

    Full text link
    A graph HH is {\em pp-edge colorable} if there is a coloring ψ:E(H){1,2,,p}\psi: E(H) \rightarrow \{1,2,\dots,p\}, such that for distinct uv,vwE(H)uv, vw \in E(H), we have ψ(uv)ψ(vw)\psi(uv) \neq \psi(vw). The {\sc Maximum Edge-Colorable Subgraph} problem takes as input a graph GG and integers ll and pp, and the objective is to find a subgraph HH of GG and a pp-edge-coloring of HH, such that E(H)l|E(H)| \geq l. We study the above problem from the viewpoint of Parameterized Complexity. We obtain \FPT\ algorithms when parameterized by: (1)(1) the vertex cover number of GG, by using {\sc Integer Linear Programming}, and (2)(2) ll, a randomized algorithm via a reduction to \textsc{Rainbow Matching}, and a deterministic algorithm by using color coding, and divide and color. With respect to the parameters p+kp+k, where kk is one of the following: (1)(1) the solution size, ll, (2)(2) the vertex cover number of GG, and (3)(3) l - {\mm}(G), where {\mm}(G) is the size of a maximum matching in GG; we show that the (decision version of the) problem admits a kernel with O(kp)\mathcal{O}(k \cdot p) vertices. Furthermore, we show that there is no kernel of size O(k1ϵf(p))\mathcal{O}(k^{1-\epsilon} \cdot f(p)), for any ϵ>0\epsilon > 0 and computable function ff, unless \NP \subseteq \CONPpoly

    Machine speed scaling by adapting methods for convex optimization with submodular constraints

    Get PDF
    In this paper, we propose a new methodology for the speed-scaling problem based on its link to scheduling with controllable processing times and submodular optimization. It results in faster algorithms for traditional speed-scaling models, characterized by a common speed/energy function. Additionally, it efficiently handles the most general models with job-dependent speed/energy functions with single and multiple machines. To the best of our knowledge, this has not been addressed prior to this study. In particular, the general version of the single-machine case is solvable by the new technique in O(n2) time

    The complexity of counting edge colorings and a dichotomy for some higher domain Holant problems

    Get PDF
    We show that an effective version of Siegel’s Theorem on finiteness of integer solutions and an application of elementary Galois theory are key ingredients in a complexity classification of some Holant problems. These Holant problems, denoted by Holant(f), are defined by a symmetric ternary function f that is invariant under any permutation of the κ ≥ 3 domain elements. We prove that Holant(f) exhibits a complexity dichotomy. This dichotomy holds even when restricted to planar graphs. A special case of this result is that counting edge κ-colorings is #P-hard over planar 3-regular graphs for κ ≥ 3. In fact, we prove that counting edge κ-colorings is #P-hard over planar r-regular graphs for all κ ≥ r ≥ 3. The problem is polynomial-time computable in all other parameter settings. The proof of the dichotomy theorem for Holant(f) depends on the fact that a specific polynomial p(x, y) has an explicitly listed finite set of integer solutions, and the determination of the Galois groups of some specific polynomials. In the process, we also encounter the Tutte polynomial, medial graphs, Eulerian partitions, Puiseux series, and a certain lattice condition on the (logarithm of) the roots of polynomials.

    Some Optimization Problems of Scheduling the Transmission of Messages in a Local Communication Network

    No full text

    Free Choosability of Outerplanar Graphs

    No full text
    corecore